Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(4): e0174706, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384226

RESUMO

RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.


Assuntos
Lipídeos/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Prenilação
2.
Clin Cancer Res ; 20(7): 1834-45, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24474669

RESUMO

PURPOSE: PIM kinases have been shown to act as oncogenes in mice, with each family member being able to drive progression of hematologic cancers. Consistent with this, we found that PIMs are highly expressed in human hematologic cancers and show that each isoform has a distinct expression pattern among disease subtypes. This suggests that inhibitors of all three PIMs would be effective in treating multiple hematologic malignancies. EXPERIMENTAL DESIGN: Pan-PIM inhibitors have proven difficult to develop because PIM2 has a low Km for ATP and, thus, requires a very potent inhibitor to effectively block the kinase activity at the ATP levels in cells. We developed a potent and specific pan-PIM inhibitor, LGB321, which is active on PIM2 in the cellular context. RESULTS: LGB321 is active on PIM2-dependent multiple myeloma cell lines, where it inhibits proliferation, mTOR-C1 signaling and phosphorylation of BAD. Broad cancer cell line profiling of LGB321 demonstrates limited activity in cell lines derived from solid tumors. In contrast, significant activity in cell lines derived from diverse hematological lineages was observed, including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), multiple myeloma and non-Hodgkin lymphoma (NHL). Furthermore, we demonstrate LGB321 activity in the KG-1 AML xenograft model, in which modulation of pharmacodynamics markers is predictive of efficacy. Finally, we demonstrate that LGB321 synergizes with cytarabine in this model. CONCLUSIONS: We have developed a potent and selective pan-PIM inhibitor with single-agent antiproliferative activity and show that it synergizes with cytarabine in an AML xenograft model. Our results strongly support the development of Pan-PIM inhibitors to treat hematologic malignancies.


Assuntos
Neoplasias Hematológicas/terapia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas/genética , Animais , Linhagem Celular Tumoral , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Cell Biochem ; 104(3): 1075-86, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18286467

RESUMO

The Cdc7/Dbf4 kinase is required for initiation of DNA replication and also plays a role in checkpoint function in response to replication stress. Exactly how Cdc7/Dbf4 mediates those activities remains to be elucidated. Cdc7/Dbf4 physically interacts with and phosphorylates the minichromosome maintenance complex (MCM), such as MCM2, MCM4 and MCM6. Cdc7/Dbf4 activity is required for association of Cdc45 followed by recruitment of DNA polymerase on the chromatin. Using high resolution mass spectrometry, we identified six phosphorylation sites on MCM2, two of them have not been described before. We provide evidence that Cdc7/Dbf4 mediates phosphorylation on serine 108 and serine 40 on human MCM2 in vitro and in vivo in cancer cells in the absence of DNA damage. Antibodies specific to pS108 or pS40 confirmed the sites and established useful read-outs for inhibition of Cdc7/Dbf4. This report demonstrates the utility of an in vitro to in vivo workflow utilizing immunoprecipitation and mass spectrometry to map phosphorylation sites on endogenous kinase substrates. The approach can be readily generalized to identify target modulation read-outs for other potential kinase cancer targets.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Apoptose , Linhagem Celular Tumoral , Cromatina/metabolismo , Humanos , Espectrometria de Massas/métodos , Componente 2 do Complexo de Manutenção de Minicromossomo , Dados de Sequência Molecular , Mutagênese , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...